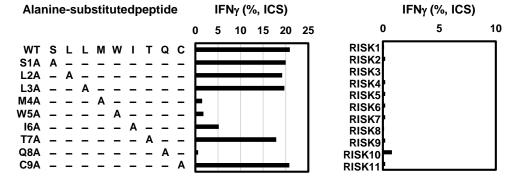
2530

Tumor responses and early onset cytokine release syndrome in synovial sarcoma patients treated with a novel affinity-enhanced NY-ESO-1-targeting TCR-redirected T cell transfer

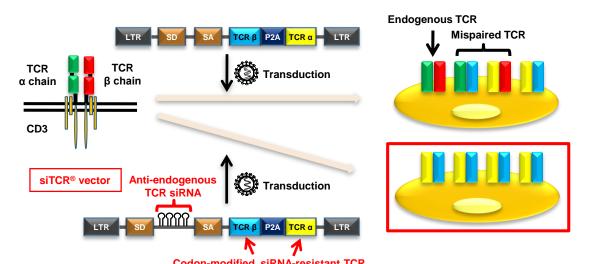
Mikiya Ishihara ¹, Shigehisa Kitano ², Hiroyoshi Hattori ³, Yoshihiro Miyahara ¹, Hidefumi Kato ⁴, Hideyuki Mishima ⁴, Noboru Yamamoto ², Takeru Funakoshi ⁵, Takashi Kojima ⁶, Tetsuro Sasada ⁷, Eiichi Sato ⁸, Sachiko Okamoto ⁹, Daisuke Tomura ⁹, Hideto Chono ⁹, Ikuei Nukaya ⁹, Junichi Mineno ⁹, Hiroaki Ikeda ¹⁰, Takashi Watanabe ¹, Shinichi Kageyama ¹, Hiroshi Shiku ¹

¹Mie University, Tsu, Japan; ²National Cancer Center Hospital, Tokyo, Japan; ³Nagoya Medical Center, Nagoya, Japan; ⁴Aichi Medical University, Nagakute, Japan; ⁵Keio University, Tokyo, Japan; ⁶National Cancer Center Hospital East, Kashiwa, Japan; ¹Aichi Medical University, Tokyo, Japan; ¹Okyo, Japan; ²National Cancer Center Hospital East, Kashiwa, Japan; ³Nagoya Medical University, Tokyo, Japan; ⁴Okyo, Japan; ⁴Okyo, Japan; ⁴Okyo, Japan; ⁴Okyo, Japan; ⁵National Cancer Center Hospital East, Kashiwa, Japan; ⁴Okyo, Japan; ⁵National Cancer Center Hospital East, Kashiwa, Japan; ⁴Okyo, Japan; ⁵National Cancer Center Hospital East, Kashiwa, Japan; ⁵National East, Kashiwa, Japan; ⁵National East, Kashiwa, Kas ⁷Kanagawa Cancer Center, Yokohama, Japan; ⁸Tokyo Medical University, Tokyo, Japan; ⁹Takara Bio, Inc., Kusatsu, Japan; ¹⁰Nagasaki University, Nagasaki, Japan

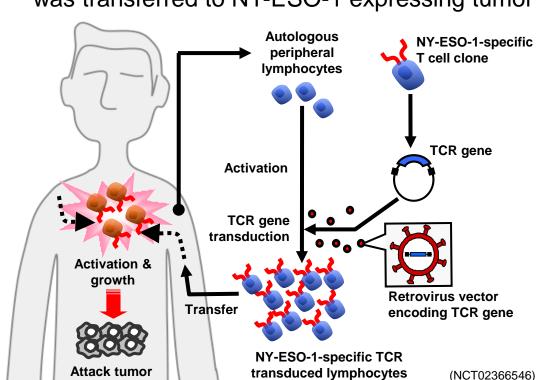
ABSTRACT

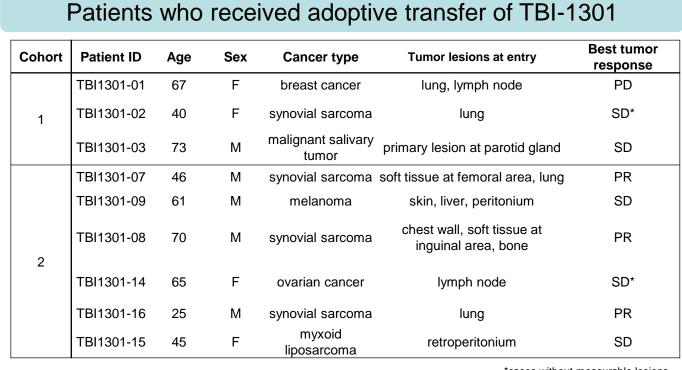

Background: Adoptive transfer of TCR-redirected T cells has been reported to exhibit efficacy in some of melanoma and sarcoma patients. However, there have not been well known about cytokine release syndrome (CRS) or its relations to tumor responses. This study evaluates clinical responses in association with the cell kinetics and CRSs after transfer of high-affinity HLA-A*02:01/*02:06 restricted NY-ESO-1 TCR-gene transduced T cells in NY-ESO-1-expressiong cancer patients with HLA-A*02:01 or A*02:06 (NCT02366546). Methods: We developed a novel-type affinity-enhanced NY-ESO-1-specific TCR and an originallydeveloped retrovirus vector that encodes siRNA to silence endogenous TCR creation. The NY-ESO-1/TCR sequence is mutated for high affinity with replacements of G50A and A51E in CDR2 region. This is a first-in-man clinical trial of the novel NY-ESO-1specfic TCR-T cell transfer to evaluate the safety, in vivo cell kinetics and clinical responses. It was designed as a cell-dose escalation from 5 x10⁸ to 5 x10⁹ cells. NY-ESO-1-expressing refractory cancer patients were enrolled, with 3+3 cohort design. Cyclophosphamide (1,500mg/m²) were administered prior to the TCR-T cell transfer as pre-conditioning. Results: 9 patients were treated with the NY-ESO-1/TCR-T cell transfer. The TCR-T cells expanded in peripheral blood with a dose-dependent manner, associated with rapid proliferation within 5 days after the cell transfer. 3 patients receiving 5x109 cells developed early-onset CRSs, with elevations of serum IL-6, IFN-y. The CRSs developed on day1 or 2 after the cell transfer. They were well managed with tocilizumab treatment. 3 synovial sarcoma patients exhibited tumor shrinkages of partial responses, and they all had highexpression of NY-ESO-1 in the tumor samples, namely, 75% or more. Exploratory analysis revealed that multiple chemotactic cytokines including CCL2/MCP-1 and CCL7/MCP-3, and IL-3 increased in the serum from the patients with CRS. The proportions of effector-memory phenotype T cells in the infused cell-product were significantly associated with CRS development Conclusions: The affinity-enhanced NY-ESO-1/TCR-T cell transfer exhibited early-onset CRS in association with in vivo cell proliferation and sequential tumor responses in the patients with high-NY-ESO-1-expressing synovial sarcoma.

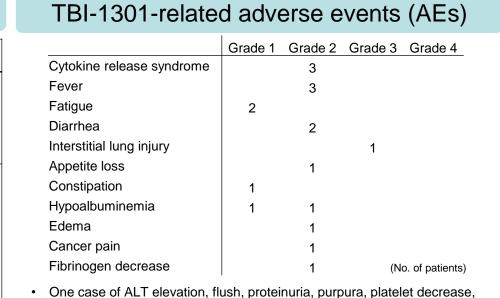
METHODS


NY-ESO-1₁₅₇₋₁₆₅-specific-TCR is replaced with G50A and A51E in CDR2ß for high affinity¹

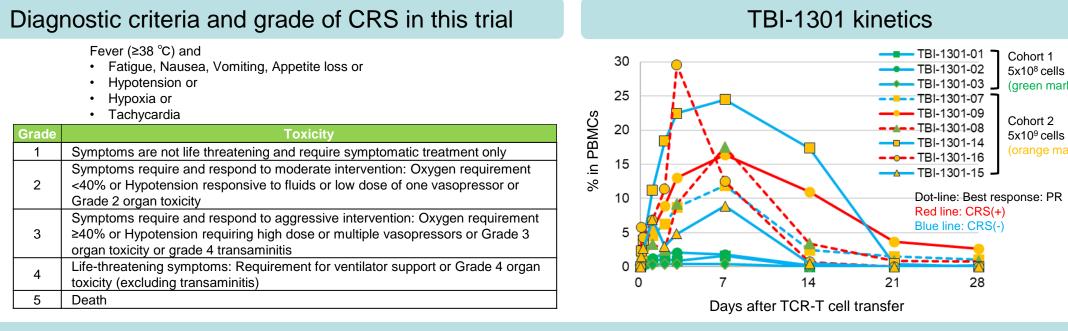
			CD	R2β				CDI	R3B				
TCR BV13	48	49	50	51	52	53	96	97	98	99	$K_{\rm D}~(\mu{\rm M})$	$k_{\rm on}~(\mathrm{M}^{-1}~\mathrm{sec}^{-1})$	$k_{\rm off}~({\rm s}^{-1})$
WT (LAU155 BV13c1)	S	V	G	Α	G	I	G	Α	Α	G	21.4	1.1×10^{4}	0.23
$V49I^a$	S	I	G	A	G	I	G	A	A	G	n.a	n.a	n.a
$G50A^a$	S	V	A	A	G	I	G	A	A	G	4.6	1.5×10^{4}	0.069
$A51E^a$	S	V	G	E	G	I	G	A	A	G	7.1	1.7×10^{4}	0.12
G50A+A51E ^a	S	V	A	E	G	I	G	A	A	G	1.9	2.4×10^{4}	0.045
A97L ^a	S	V	G	A	G	I	G	L	Α	G	2.7	2.3×10^{4}	0.061
G50A+A51E+A97La	S	V	A	E	G	I	G	L	A	G	0.9	1.4×10^{4}	0.013
1G4 (36) ^b	S	V	G	A	G	I	G	N	T	G	14.2	1.2×10^4	0.17

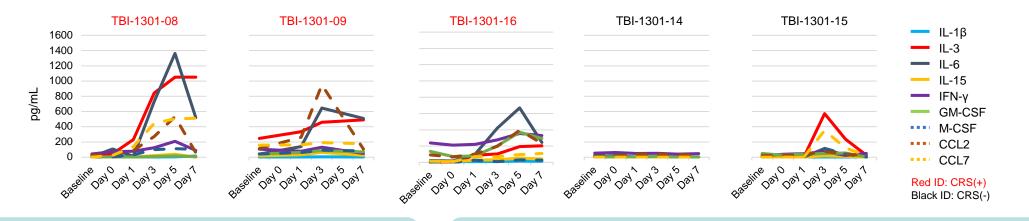

G50A+A51E TCR had low reactivity to analogous peptides searched by the BLAST database²


Retroviral vector encoding siRNA to silence endogenous TCR is adopted in TBI-1301³.



Autologous T cells transduced with G50A+A51E TCR and silenced endogenous TCR (TBI-1301) was transferred to NY-ESO-1 expressing tumor bearing HLA-A*02:01 or A*02:06 patients.


	for 10-12 days	Day -3, -2 (Day -8∼-2)	Day 0	Day 28	Day 56			
200mL blood	TCR-gene transduction & ប	QC preconditioning Cy or (Cy+Flud)	TCR-T-cell transfer	▼ Evaluation	Re-evaluation			
Monitoring Safety & Cell kinetics								
C	Cohort Pro	econditionin	g	TBI-130	01			
	'		5.0×10 ⁸ cells					
	1	CY	į	5.0×10 ⁸ c	ells			
	1 2	CY CY		5.0×10 ⁸ c				
	_				ells			



tachycardia were also observed. Each AE was grade 1 Three patients developed CRS 13.5-28.5 hours after TBI-1301 infusion They were treated with tocilizumab and resolved. No grade 4-5 AEs were observed.

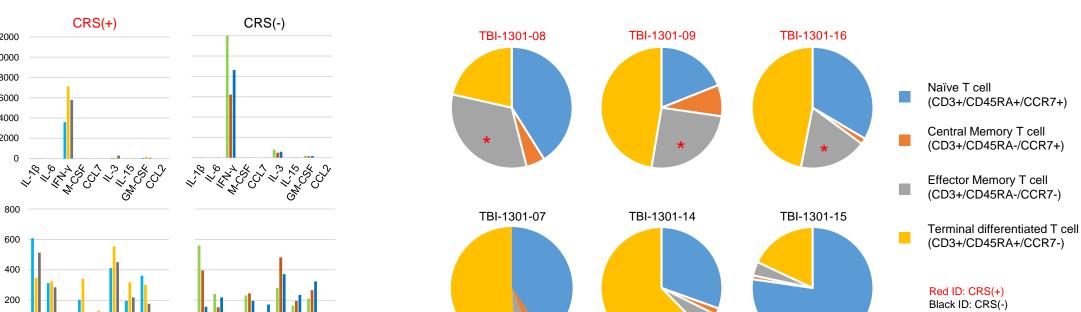
hyperkalemia, uric acid increase, ferritin increase, creatinine increase and

Serum cytokine levels in 5 patients: 3 from CRS(+) and 2 from CRS(-)

Cytokine secretion from TBI-1301 products after in vitro NY-ESO-1-peptide stimulation

■ TBI-1301-08

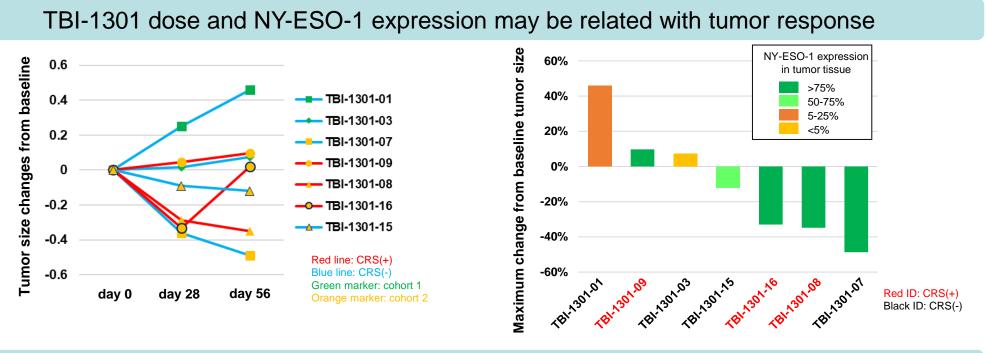
TBI-1301-09

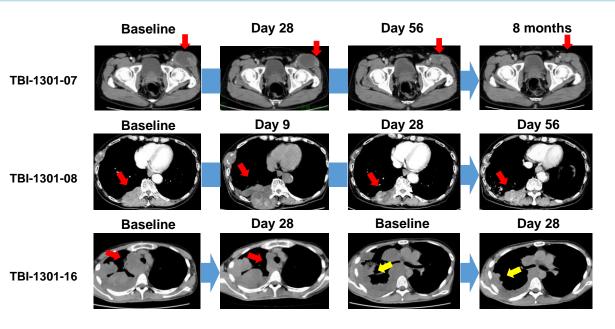

■ TBI-1301-16

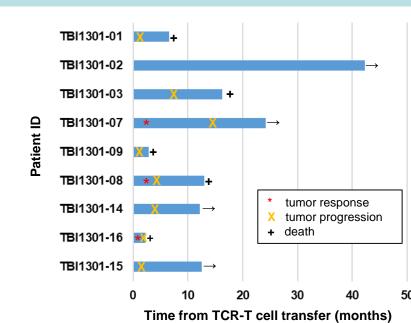
■ TBI-1301-07

TBI-1301-14

Red ID: CRS(+)


Black ID: CRS(-)


• CRS(+) cases, statistically significant between CRS(+) and CRS(-) cases (*p*=0.008)


CD8+ T cell Phenotype of TBI-1301 product

RESULTS

The duration of response

CONCLUSIONS

- TBI-1301 was expanded in patients in a dose-dependent manner.
- In cohort 2, 3 patients developed CRS, but treatable with tocilizumab. Grade≥3 CRS was not observed.
- In CRS patients, serum CCL2, CCL7, IL-3 and IL-6 levels were elevated.
- TBI-1301 pre-infusion product showed similar cytokine secretion after in vitro stimulation. CCL2, CCL7 and IL-6 were not secreted by TBI-1301.
- The frequency of effector memory phenotype in TBI-1301 product may be related with CRS.
- TBI-1301 had 3 PR. NY-ESO-1 expression and TBI-1301 dose may be related with tumor

REFERENCES

- 1. J Immunol 184: 4936-46, 2010
- 2. Y. Miyahara, Mie University. Unpublished data.
- 3. Cancer Res 69: 9003-11, 2009

ACKNOWLEDGEMENT

- We are grateful to members of TakaraBio Inc. for the preparation of TCR-T-cells and the analysis of the cell kinetics, and also to members of Takara Bio Inc. and FiveRings Co. for their support to the clinical trial management.
- This research is supported by the Medical Research and Development Programs Focused on Technology Transfer, Adaptable and Seamless Technology Transfer Program Through Target-driven R&D (A-STEP) from Japan Agency for Medical Research and development, AMED.